If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10.54=-16t^2+1776t=
We move all terms to the left:
10.54-(-16t^2+1776t)=0
We get rid of parentheses
16t^2-1776t+10.54=0
a = 16; b = -1776; c = +10.54;
Δ = b2-4ac
Δ = -17762-4·16·10.54
Δ = 3153501.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1776)-\sqrt{3153501.44}}{2*16}=\frac{1776-\sqrt{3153501.44}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1776)+\sqrt{3153501.44}}{2*16}=\frac{1776+\sqrt{3153501.44}}{32} $
| b-5+2b=4 | | 10x+8=11x-25 | | 24+4h=4 | | 9w+1=100 | | x-3/5=-2/4 | | -15x-110+7x=90 | | x-2/3=14 | | 4x+4=5x-15 | | -4x=-12+24x | | x-21=43 | | 2x – 31 = 3(x + 2) | | X=130x4 | | 2x+10=146 | | 0,5+4x=5-0.8571 | | 5+11g=9=4 | | 9x-32=64-7x | | -2(z+3)z=-z-4(z+2) | | 20−2x=2(6+x)= | | 11(6x+5)=4 | | -2(z+3)z=-z-4(z=2) | | 20−2x=2 | | 20−2x=2(6+x) | | 18(6x+3)=2 | | -12=(g+12) | | 5x+1=4+3x | | 10x-8=4x+3 | | −2x−2= | | -50=(z-1) | | 22=(n+20) | | 2x-5x-35=17 | | -2=(d-5) | | -4=(b-1) |